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ABSTRACT

This thesis models induced magnetic fields from the motion of seawater in the earth's

magnetic field analytically and compares the results to arctic on-the-ice magnetic fluctuaiion

measurements. The oceans have various types of internal motions, such as interne! waves and

turbulence. This motion of seawater, which is a conductor, in the earth's magnetic field induces

a current density. This current density, in turn, induces its own magnetic field. This thesis

models internal waves and upper layer ocean turbulence analytically. The corresponding

induced magnetic fields are calculated using a static form of Maxwell's equations and parameters

for the Arctic are inserted. Comparisons are made with measurements from the A:ctic Internal

Wave Experiment (1985). The predicted fields from internal waves have magnitudes that are

measurable and of the same order of magnitude as ionospherically generated fields. The

predicted fields from turbulence are several orders of magnitude smaller than ionospherically

generated fields. Besides giving information about internal motions in the ocean, the seawater

induced fields are a noise source in magnetic anomaly detection.
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I. INTRODUCTION

Seawater is a conductor situated in the earth's magnetic

field. Motion of this conductor from surface waves, internal

waves, turbulence, etc. produces a motional electromotive

force. The resulting current density induces its own magnetic

field. Understanding the production and propagation of such

magnetic signatures provides information about the underlying

seawater motion. Also, these induced magnetic fields are a

noise source for other magnetic measurements, such as magnetic

anomaly detection.

This thesis constructed analytical models of these induced

fields and compared the predicted values with experimental

measurements. One model considered internal wave sources and

another ocean upper boundary layer turbulence. The internal

wave model had versions for the Arctic and lower latitude

oceans.

The internal wave model started with the mathematical

derivation of a governing equation for seawater velocity from

fluid mechanics. The model assumed no rotation, zero

viscosity, incompressibility, and slow variation of mean

density with depth. Separation of variables provided a linear

differential equation for the amplitude of the vertical

component of velocity. The corresponding solution and the

separation of variables equations together provided an
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analytical model of seawater velocity, V. The velocity

frequency dependence was then tailored to fit observed

velocity spectra for either the Arctic Ocean or lower latitude

oceans.

Next, the induced magnetic field was calculated. The

motion of the conducting seawater with velocity v in the

earth's magnetic field B (assumed constant) induces an

electromotive force and causes a current density J. This

current density a induces its own magnetic field B1. Because

the frequencies involved are on the order of 10'3 Hz or less,

displacement currents were neglected and the inductive field

B1 calculated with the Biot-Savart Law. The total induced

field B' at a field point was calculated assuming an internal

wave of infinite y-extent with wavenumber in the x-z plane.

Integration over all x and y, and over z within a depth range

from D. to D yielded B'. The wavenumber dependence was

removed by two different methods. In one, B' was converted to

a power spectrum, transformed from a one-dimensional to a two-

dimensional spectrum, and integrated over wavenumber from a

minimum, k~i, to infinity to give B,'2(W) . In the other,

application of a boundary condition to the vertical component

of velocity produced a dispersioni relation between w andk.

Choosing the lowest mode of oscillation, using the dispersion

relation, and converting to a power spectrum yielded B,2(0a).

Data from the Arctic Internal Wave Experiment (AIWEX) in

1985 provided a means to compare the model B'2 power spectral

2



density as a function of frequency with experimental results.

The predicted magnitudes for the induced fields B' 2 were in

the same range as extrapolated magnetometer measurements. The

large spatial extent of internal waves produced signals of the

same order of magnitude as ionospherically generated signals.

The first k-dependence method yielded frequency responses that

do not follow the 1/f 2 dependence of the data. The second

method does yielded the 1/f or 1/f 2 frequency dependence

expected. The success of the second method implied that the

modal structure of the internal wave field must always be

utilized in calculating the induced magnetic fields.

The turbulence induced magnetic field model had a similar

formulation. It assumed the region of turbulent seawater

resides in the upper boundary layer of the ocean between

depths Do and D, and to be three dimensionally isotropic

within this region. The seawater velocity v was analytically

modeled as a linear superposition of plane waves propagating

in three dimensions with various wavenumbers and frequencies.

This motion in the earth's magnetic field B resulted in the

current density J, which was utilized in the Biot-Savart Law

to calculate the induced magnetic field B' at a field point,

again neglecting displacement current. The total field was

found by integrating over all x and y, and over z between Do

and D. Keeping the principal term of the BI expression, the

induced field components were integrated over wavenumber from

a minimum, kmin, to infinity. Then the horizontal field

3



magnitude, B'., was converted to a power spectral density as

a function of frequency.

This power spectrum was compared to the AIWEX magnetometer

data. The frequency dependence of the model agreed with the

observed 1/f 2 dependence of the data. However, the predicted

magnitudes were several orders of magnitude below the data.

The AIWEX signal in the 10"1-10.2 Hz range appeared to arise

from fields generated in the ionosphere.
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II. BACKGROUND

A. OCEAN ENVIRONMENT

The conductivity of seawater principally derives from

dissolved salts. In general, conductivity decreases with

depth. An average value for ocean conductivity is 4 (S/m).

Seawater density varies in the ocean. Temperature and

salinity are the main governing factors. Density as a

function of depth generally displays three zones (Gross,

1971). In the surface zone, from the surface to 50-100 m, the

density remains approximately constant with depth due to

mixing of the upper layer of ocean by wave action. The next

zone, from 50-100 m to around 500-1000 m, forms the pycnocline

zone. Density increases rapidly with depth. Generally, the

density follows a monotonic increase because the temperature

declines with depth. The bottom zone, below the pycnocline,

is called the deep zone. Here, density slowly increases with

depth due to decreasing temperature. Fig. 1 (Gross, 1971)

depicts these zones and their general temperature, salinity,

and density variations.
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Thermocline Halocline Pycnocline

0 Surface zone
.Pycnocline zone

2 -

Deep zone

03

4

Temperature (C) Salinity Density
(parts per thousand) (grams per cubic centimeter)

Figure 1: Typical Ocean Thermocline, Halocline, and
Pycnocline (Gross, 1972)

The earth's permanent magnetic field permeates the oceans.

Since the field is approximately that of a magnetic dipole,

the direction and magnitude of the field vary across the

oceans. It goes from basically horizontal with respect to the

surface of the earth and magnitude of about 30,000 gamma

(nanotesla) near the equator, to basically vertical with

magnitude of about 60,000 gamma at the north and south

magnetic poles. Seawater motions of the ocean within this
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field induce the electromotive force and the resulting current

density J.

B. INTERNAL WAVES

A change in density with depth ( ap/az < 0 ) allows

buoyancy oscillations within the ocean known as internal

waves. The momentum and continuity equations for fluids are

used to derive an equation for the vertical velocity of these

internal waves.

Following Gill (1982), the fluid momentum equation is

Du +20xU=-p-'Vp-g + vV2U, (1)Du

where u = fluid velocity - ui + vj + wk, n - system rotation

angular velocity, and v = kinematic viscosity. Assume

isentropic motion, i.e. no viscous effects (v=O) and no

rotation (n=O). The mass equation of continuity is

P-D2k + V'u = 0.Dt

Assume density is a function of potential temperature, e, and

salinity, s, independent of pressure, p. Using the chain rule

and taking e and s constant with respect to time over a

differential element

S= a DO 8 Ds (3)
Dt -) a +@s Dt

7



The continuity equation then becomes the incompressible fluid

condition

V.u = 0. (4)

Assume small perturbations in pressure, p', and density, p',

P = P, + P P = PO + pI, d-" = _gP"

The fluid momentum equation becomes

P2-• = -Vp' - p'g/.9

Applying the convective derivative with average velocity v,

the time derivative of density becomes

S= .?P + (VV) v= ?dp = 0. (7)
Dt at Ca a dz

The fluid velocity components u and v can be eliminated by

first taking the partial derivative with respect to time of

the continuity equation

V - u = + w ,
atax atay ata(

and then using Equation 6 in component form to replace time

derivatives of u,v with spatial derivatives of p'. The

result is

8



P W + (9)
0 azat ax 2 + ay 2

Combining Equation [73 and the time derivative of the z-

component of Equation (63 yields

2 + Nw 2ir (10)

where N is the Brunt-Vaisala frequency, given by

N 2 . -_I dp__ (11)
p 0 dz "

Taking the horizontal Laplacian of Equation [103

a2 (-_±._±) W + 'N2 (_f_ +2 1±_ W L(± -- p

aC2 aX2 ay2  aX2 ay2  p., aX2 ay2 aZat

Substituting Equation (9) in the right hand side and

rearranging yields an equation for w, the z-component of

velocity,

[a2  +-a' +) w + N 2 (+-)w = 0. (13)
a-t ax•2 ay2  p 0  (3 ) N ax 2 ay 2

Assume that the vertical velocity, w, varies with depth,

z, much more rapidly than the density,po. Then

Z a (pa )w, __W
- (14)

p o az zz

9



which is known as the Boussinesq approximation.

Equation [13) then simplifies to

a2 82 C12 83202 2
+2 -+ ) + N 2 (-E+-±) W 0. (IS)

7t 2 'X 2 Ty 2 aZ
2  OX2 ay 2

This equation describes the behavior of the vertical velocity

component of an internal wave disturbance.

Separation of variables can simplify Equation (15)

w(x,y,z, 0) X(x) Y(y) Z(z) T(t) (16)

The X, Y, and T portions have the form

*x k 0X , (17)

with the following solutions

X = x 0 eikx; Y = YoeikyY; T = Toel'. (16)

The z part becomes

2z + k2(1 N(z)) 2=0. (19)
az 2 +2

This equation possesses the Sturm-Liouville form. Thus, its

solutions are orthogonal eigenfunctions Z(z) with real

eigenvalues. The vertical velocity solutions then take the

form

10



W(X,y,z,t) = Z(z) ei(k• +kyyf0) (20)

Since they are orthogonal, any internal disturbance can be

expanded as a sum of these solutions.

For Z(z), try solutions of the form

Z(z) = 1ý(z) ei'k'z (21)

Substituting this into Equation [19] gives for %(z)

d 2 '2k N( Z ) 2 0.] 0 (22)- - 21kz - -+ [( ______ 22
dZ2  (k3zky) - =2.

The term with N(z)2 makes this, in general, a nonlinear

differential equation.

To simplify this equation, approximate p(ý.) as a piecewise

continuous function over adjacent regions such that ap/az is

a constant in each region. Then N(z) will be a constant in

each region. Equation (22) can be solved for each region, and

the solutions joined with boundary conditions specifying

continuity of velocity. Alternately, approximate p(z) by a

superposition of linear slope segments each with 8p/dz equal

to a constant. Then N(z) is a constant for each segment and

Equation [22) is again readily solved. These approximations

are seldom applicable to the real ocean (Gill, 1982) for

accurate velocity profiles. However, the resulting solutions

11



do have the general shape and the oscillating character of the

profiles resulting from actual p(z) distributions.

With N(z) equal to a constant, Equation [22) becomes a

second order, constant coefficient, linear differential

equation

d2 •
d~ a g M - 0, (23)

dz 2  (3

,v2 _ (02 2 2] (24)

where a - 2ikz, 3 [(N 2 ) (k + ky) - kz].

The solutions of the characteristic equation are

-U~t~ al --4A N 2 - (•02 2 2

2 - -ike i± Q2 ¢(kX + k;) (2S)

Define 6 as

NZ - ) (k2 + k2) (26)

In a stratified ocean, the maximum oscillation frequency

equals the buoyancy frequency N. Thus, w 1 N , and 6 is real.

For w < N, the general solution of equation (23] is

iý(z) = e"Ik*(Ci e"'8z + C2 e-az]. (27)

12



Initial and boundary conditions determine the constants Cl and

C2.

The vertical velocity component is then

w(x,y,z,t) 0 (z) ei(k k-k_ z* dC) = -(Z) e•(k' '•t .(28)

The incompressible continuity condition, Equation [6],

determines the horizontal components, u and v,

u(x,y,z,t) = i - kc2 i ( ) eI(2)e 'WO (29)

V (X YZ' 0 i _ - Z 2 x 2) e(30)

8~~ Z ÷ ky
v(x,y,z, t) - [i.•- - kz '] (kaz k2.k ) l. .t-e) ( O

These analytical expressions for the seawater velocity now

facilitate calculating the induced magnetic fields.

C. ARCTIC UNDER ICE SEAWATER TURBULENCE

In the arctic, turbulent seawater flow exists from below

the ice (effectively zero depth) down to some depth, D, at

which the motion transitions to internal waves. 40 m is a

typical value for D (private communication with T. Stanton).

Utilize superposition of three-dimensional plane waves of

varying wavenumber and angular frequency, w, to model this

turbulent region

13



v - v,(k,, w)I ,, vy(k,,,.,))el' , ÷ v.(k., )&el*JEf] e--e. (31)

Assume three-dimensional isotropy of turbulence to simplify

the analysis

v,(k.,w) = v, (ky, w) = v,(k.,g) a v(k,w). (32)

Empirically model the velocity amplitude function v(k,w) as

v(k,w) =) (33)

+12 ýT72

The power spectrum for this function is then

2

v 2 (k,c() = Vo (34)
(k2 + k 2 ) ((2, + ( 2 )

The constant factors k. and wo in the denominator keep the

power finite as k and w approach zero. For large k, this

exhibits the same k-2  dependence as for internal waves

(Garret, Munk, 1972). For large w, this exhibits the w-2

dependence characteristic of under ice internal wave fields

(ONR Report, 1991). The velocity expression is

v(k,w,r, t) = v (3)Fk~e (r -- -W I--
14 k2 ÷ ,

14



III. MAGNETIC SIGNATURES

A. PROPAGATION OF INDUCED ELECTROMAGNETIC FIELDS

This model neglected attenuation due to the propagation of

the electromagnetic waves through seawater, a conductor,

because of the low frequencies involved and the corresponding

long wavelengths. The electromagnetic waves are characterized

by their wavelength, A. For a "good conductor", like

seawater, and a "good insulator", like air, the wavelengths

are

Xconductor 2K n insularor " C (6'~o-u -r-- (36)

where

Po=4xlO" -7, a=cond= 4-, C=3.0x10--S . (37)
A2  m S

Table I lists wavelength values for typical frequencies of

interest in internal ocean seawater motions.

15



Table I: Wavelength Values

Freq (RH) Asswator (M) Asir (a)
100 1570 3x108

10"1 5030 3x10 9

i0" 15,700 3x101 0

10.3 50,300 3x10"I
10.4 157,000 3x10 12

The induced magnetic fields will "propagate" with

characteristic wavelength Aseawater up through the ocean and then

with the much, much longer wavelength I.,, above the surface.

Characteristic ocean buoyancy frequencies are around 10.3 -

10"4 Hz. Since internal wave frequencies are always less than

the buoyancy frequency, and the depth of the Arctic Ocean is

around 3000 m (Dietrich, et al., 1980), the corresponding

wavelengths of the induced electromagnetic radiation are much

larger than the depth. Within the ocean and in the air above

the ocean surface, conduction current, J, and not displacement

current, cfE/at, creates the induced magnetic field. The

field point is in the "near field" and propagation effects are

negligible. Relevant turbulence frequencies range around 10"-

10'3 Hz. We confined our interest to turbulence in the upper

boundary layer of the Arctic Ocean. Since a nominal depth for

this layer is 40 m, the electromagnetic radiation wavelengths

involved are again much larger than the depth and fields above

the surface are "near field" with negligible propagation loss.

Thus, we neglected attenuation due to propagation in the

seawater conducting medium. For these same reasons, the

sea/ice/air interfaces do not attenuate the induced fields.

16



The earth's magnetic field inside the ocean will possess

the same value as in the air above the ocean. This follows

from the assumption that the earth's field is a static (DC)

field, and that the magnetic susceptibilities of the air and

ocean are the same (i.e. both are non-magnetic). The

equivalence derives from the resulting boundary conditions

between the two media

Bsea. tangential ' Bai. tangentizal' lea.normal = Bair~nozma

B. INTERNAL WAVE SIGNATURE

1. Geometry

The method of Crews and Futterman (1962) allowed us to

calculate magnetic signatures. The current density followed

from the seawater velocity in the earth's magnetic field.

This current density was then utilized in the Biot-Savart

method of calculating magnetic induction at a field point.

Fig. 2 shows the geometry of the earth's magnetic field

within the ocean (northern hemisphere). To simplify the

calculations, choose the wave vector in the x-z plane. Then

the y-components of the wave vector and the velocity are zero.

Assume the wave extends infinitely in the ±y directions. The

seawater in the volume element dxdydz at the point (x,y,z)

with velocity v(x,y,z,t) forms a source element for an induced

magnetic field at the field point located at (O,y,-h). Fig.

17



3 shows this geometry. "z" represents the depth below the sea

surface. "h" represents the height of the field point above

the sea surface.

// ,x

.B

Figure 2: Geometry of the Earth's Magnetic Field

18



field point B°, \
h ",a

y out ofpage: a',- *
ocean

\\ e .. Doi
........................I ....... ......... 1 of i terh l

z wave field

Z-------------

x source point

bottom of internal wave field D

... .. ... .. ..Z . .. 2 .. ..2 .. ...2 .....D
R = x + (h+z)

Figure 3: Geometry for Calculation of Internal Wave Induced
Magnetic Field
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2. Induced Magnetic Field

Seawater behaves as a relatively good conductor, with

conductivity of approximately 4 S/m. The motion of this

conductor in the earth's magnetic field creates an

electromotive force. This in turn leads to a current density

given by

J- a ( vXB) - a ( vBB- vB,) f. (39)

Since velocity is confined to the x-z plane, the current

density J is in the y-direction.

This current density creates a secondary induced magnetic

field. The Biot-Savart law gives the differential induced

magnetic field due to a current element di

d# = PIA di X R di = 7 d.A. (40)
2n R2

The prime indicates the secondary induced field. Integration

of Equation (40] gives the components of the total induced

field. The assumption of infinite extent of the wave in the

±y directions (i.e. symmetry about y-0) results in the y-

component summing to zero. The x and z components are

ff dB= ff. -LO.A-(h+z), (41)

JJX J 21T R 2

S= ff d = f x. (42)
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Substituting in the expressions for di, v, B, and R and

integrating (see Appendix A] gives

a -- 0 '0-k -late ( -(a *-.* " . ) o. __# __-_.., ,,. . ____ (43)

2~~ N3r _T T.

2 .K -k7 7.5 -)oycs M. --ki167 ka77i

Here, 6 reduces to

N a kx ý 2  (4S)

These equations are fairly complicated. However, they

simplify somewhat when evaluated specifically for conditions

in the Arctic

S= B k;: (0 a 900; Coso=- 0; sine =- ; Do 0 . (46)

The induced magnetic field components become

S, •o AS ., -,,+ ( • +.,, 20' .(47)

"d - a7 - t . . ... -- ib- ( 1 ,'____"_" I°
B1  - - **( j 2 qgj

2 *NNS20

Be 2 N, 43 -. 7T7 7 k. (0V-2ws) "

Simplifying,

i -/.R1,.(°AC.' ( ) (p6' - [ k. -e (-kcosD - bsinD) 1. (49)

k,.' - .

Inserting the expression for 6, these become
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18;-B's ,,•-.90_C• Ir T--, i- o-1-*•(co, NS-, 08=• JCD¢k• - Biso)N

Note that the x and z components are exactly the same except

for the phase factor of i

B-i Bk, wi ch i -e' 2.(2

Thus, the x and z components are 90" out of phase, and the

induced magnetic field vector rotates in the x-z plane. It

has magnitude

IB'I = 1B I = IB j (S2)

Important characteristics of B' are (1) exponential decrease

in magnitude with height, h, above the internal wave field,

and (2) increase in magnitude with the vertical height D of

the internal wave field.

These expressions contain angular frequency w, wavenumber

kJc, and time t. Comparison with experimental data often

requires the total field power spectrum as a function of

frequency. Thus, all of the wavenumber and time dependencies

must be removed.

The frequency and wavenumber dependencies of the velocity

were empirically modeled based on actual measurements of

velocity power spectra. The amplitude of the internal wave

velocity, C, which so far has only been a multiplicacive

component in the eqiations, became a function of frequency and
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wavenumber. This, in turn, added additional frequency and

wavenumber dependence to the induced magnetic field B'.

The Arctic Internal Wave Experiment (AIWEX), conducted in

1985 in the Canada Basin of the Arctic Ocean (depth > 3500 m)),

measured horizontal velocity with an electromdgnetic current

meter at a depth of 100 m. Fig. 4 shows one such spectrum.

Sampling rate limited the highest frequencies measured to

around 6 cycles per hour (1.7x10"3 Hz), the local buoyancy

frequency. The spectra indicate a 1/f frequency dependence

over the range 10"1 - 10 cycles per hour (2.8x10"5 - 2.8x10"3

Hz) (Levine, et al.,1987). This frequency dependence was

empirically modeled by

2 2

IvA = CA - CA , ("A" for AIWEX) . (53)

,+ (.2 2 itFf IT +f

For w >> wo, it behaves as 1/w. For w < w., its value stays

approximately constant and limits the total energy in the

spectrum as w approaches zero.

The Coordinated Eastern Arctic Experiment (CEAREX) in 1989

measured velocity power spectra at depths of 50, 100,150,200,

and 250 m below the surface of the ice. The 50 m measurements

were made with an acoustic doppler profiler and the other

measurements were made with electromagnetic current meters.

Appendix C contains reproductions of the resulting velocity

power spectra. All plots showed an approximately 1/f 2

frequency dependence in the range 0.1-10 cycles per hour
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Fiqure 4: AIWEX Horizontal Velocity Spectra (solid lines);
Garrett-Munk Model Spectrum (dashed lines) for comparison.
(Levine, et al., 1987)
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(2.78x10"5 - 2.78x10"3 Hz). Often this dependence flattened

out for frequencies below about 4x10"2 cycles per hour

(I.11x10"6 Hz). (Czipott and Podney, 1989).

This frequency dependence was empirically modeled by

Cv0 2 _ Cc ("C" for CEA•R•X .(S4)

W2 + 02 4n2 (f2 + f2)

For w >> wo, it behaves as 1/2, and for w < wo, it remains

approximately constant. Choosing w. corresponding to 4x10"2

cycles per hour gives

W =2fo = 2n (I.Iix10'- Hz) = 7.0x10'" rad/sec. (55)

Measurements of internal wave spectra in other oceans of

the world at lower latitudes have indicated a characteristic

1/f 2 frequency dependence. Garrett and Munk (1971) formulated

a popular empirical model based on these observations with

such a frequency dependence. However, the AIWEX spectra

revealed less total energy in the arctic internal wave field

by factors of 15-30 than in fields described by the Garrett-

Munk model (Levine, et al.,1987). The CEAREX data indicated

a wavefield less energetic than lower latitude fields, but

still significantly more energetic than the AIWEX wave field.

The CEAREX data, due to loration, were subject to large

diurnal tidal motions which pumped energy into the internal

wave field. In addition, under ice topography (ice keels) and

local sea floor geography ( i.e. Yermak plateau) affected the
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internal wave field (Stanton). In contrast, the AIWEX data

were taken in the Canada Basin of the Arctic Ocean (Padman, et

al.,1990) and experienced far more quiescent conditions.

Arctic internal wave fields possess different

characteristics from lower latitude fields. Some suggested

causes in the Arctic are less forcing due to wind, a damping

effect caused by the ice cover, lack of surface waves, and

weak large scale circulation (Levine, et al.,1987). Choice of

frequency dependence in the internal wave field model

critically depends on the location that is to be modeled. An

arctic model will use a 1/f dependence for the velocity power

spectrum, whereas a lower latitude model will use 1/f 2 . The

CEAREX location represents a special situation where large

tidal forcing causes the internal wave field to possess

characteristics similar to lower latitude fields.

Garrett and Munk (1971) show a collection of data on

displacement power spectra versus wavenumber obtained from

towed measurements. The data follow a 1/k2 pattern over a

full four decades. The largest wavenumber corresponds to a

wavelength of 10,000 m. Assuming a simple plane wave

description, the velocity spectrum will possess the same 1/k 2

dependence

displacement • ---•--C ei(M"0c)'/• velocity - d(displacement) . jo C eJ•=.u-6 .

diplceen VT dc kT

A simple empirical model for the k dependence could resemble
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the omega dependence model with a power limiting k02 factor.

However, to facilitate later mathematical computations, use

instead

=C 2
IV12 = C' );a, < k < -. (57)

The total energy in the spectrum is now limited by the cutoff

at k1,,, instead of having the spectrum level out at low k.

Assume this model applies to both arctic and lower latitude

internal wave fields.

Combining both forms, a model for the velocity spectra for

the Arctic (i.e. AIWEX) is

22

IVA2i C c -_ C. I< k < -. (s5)
ý- ýcj2k2 7fTf2 k2

The model for lower latitude and CEAREX velocity spectra

becomes

IvC_12 __ __ __ kin < k < C. (s9)
(W' + (2) k 2  472(f2+f2) k2

Comparison with the AIWEX and CEAREX data determine the

constants of proportionality, CA and Cc. At I cph, the AIWEX

spectrum is approximately 0.3 (cm/s) 2/cph (0.11 (m/s) 2/Hz), and

all the CEAREX spectra have approximately the value 0.5

(cm/s) 2/cph (0.18 (m/s) 2/Hz). Approximating the AIWEX model

as proportional to 1/f at this frequency
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2 2
IvA_= -J -k -- I (60)2 -n f fi~fjc kf2  i 'k.

Evaluating at 1 cph

A(cm/s) 2 - CA (62)
cph 2 n (1 cph) kt'

Then

c= = 2n (0.3) (Cm/s) 2 k•i = 1.9x1o-' kin (-a) (62)

Approximating the CEAREX model as proportional to 1/f 2 at this

frequency
22

iVCj2: cC2 [.Ld. cC (63)
-4,Tf2J kk2 4(62f)

Evaluating at 1 cph

Ivc(l cph)1 2 = 0. (cm/s) 2 = Cc2
""cph 4n2 (1 cph) 2 k(64)

Then

c2 = 42(0.5)(cm/s)2-cph kin 5.5x10" k1i (-) (65)
S 3

The formulas for the induced magnetic field involve the

velocity amplitude and not the velocity spectral density. The

conversion to a velocity amplitude was made using the

definition of the power spectral density. The conversion for

this case was simple because of the simple time dependence.
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Given a function f(t), the power spectral density is the

Fourier transform of the autocorrelation function of f(t).

Let F(f) be the Fourier transform of f(t). The correlation

theorem says (Brigham, 1988)

autocorrelation of f((t) -ff(r)f()d - Frpalr -A66

The power spectral density is thus F(f)F*(f). Assuming the

velocity has the following time dependence

v(t) - f(t) = CeW' (67)

th'en the Fourier transform of the velocity is

V(f) = •[ C eite 2 f'otdt: = C 6 (f-fo). (68)

The power spectral density becomes

IV(f) l12 = V(f) V'(f) = C2 6 2 (f-f 0 ) = C2. (69)

Thus, for this simple time dependence and real coefficient C,

the power spectral density is obtained simply by squaring the

coefficient.

Applying this result to the above model, the velocity

becomes

vA(k, w)) - CA vc(k,c) CC k, < k < .. (70)
(C02+W2) 1/4 k
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This simple model in which the frequency dependence factor and

the wavenumber dependence factors are multiplicative factors

makes the following calculations much easier. However, as

Garrett and Munk (1971) point out, actual observations

indicate that a given wavenumber's contribution depends on the

frequency. Following Garrett and Munk, the function A(w) was

included here as a reminder of this additional frequency

dependence

v, ((k,w) - CA vc(k, w) c (CO) J,, ( k .(71)

Equation (71] replaces the constant "C" in the induced

magnetic field expression, Equation (50].

Examine two different methods to remove the k-dependence.

For the first method, assume internal waves exist with a

continuum of frequencies from zero to the buoyancy frequency,

N, and assume they possess a continuum of wavenumbers from a

minimum, km.n, to infinity. The rationale is that actual

internal wave fields result from a complex superposition of

waves generated by different sources propagating in a non-

uniform ocean. The assumption of a continuum may circumvent

a detailed description of this wave field. The second method

utilizes the eigenfunction mode structure of the wave field

required by Equations (17) and [19). Application of a

boundary condition on the vertical velocity at depth D yields

a dispersion relation between w and k. for each mode. These
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dispersion relations remove the k. dependence in B'. The

power spectral density B'2 is calculated for the lowest order

mode n=l. The lowest order modes will contain a majority of

the energy in an internal wave field.

Try the continuum approach first. To simplify

computations, assume that the depth D >> 1/k.. Then the last

two terms in the induced magnetic field expression, which are

weighted by exp(-kD), can be neglected with respect to 1,

simplifying the conversion to power spectral densities. The

induced magnetic field has the simple e"It time dependence

referred to above. Squaring the amplitude gives the

corresponding power spectral density

A2 : ,,B CA] 2 1 - L2(() 4)(N 2 ÷c 2 ) (72)

IB'12 = (j•L aCc' 2 1 _• (2) W N2 &) (73)

CC J 4 N4 (W2 (02) (3

The formulas above are "one-dimensional" formulas in that

they were derived assuming only one-dimensional wavevectors,

kX. The more general wavefield will be two-dimensional with

wavevectors of magnitude
k = k.k (74)

The one-dimensional expressions for the induced magnetic field

power spectrum must be converted to a two-dimensional form.

Yaglom (1987) shows a way to accomplish this. Given a one-
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dimensional power spectral density function, f 1 (ki). Then the

corresponding two-dimensional power spectral density function

is

f, (k) =1 d fd (ki) dk(

The one dimensional induced magnetic field k dependence was

1/kX'. Appendix D contains a summary of the details in

computing a two dimensional k dependence. Then

(k) = 3 1 (76)
z4 kS

Now, perform the integration over k (kmin < k < co)

-.2dks 16 k4 . 16 1i (77)

The induced magnetic field two-dimensional power spectral

density becomes

IBI12 [Ij ouBCA] 2 3 IL2 (6)) (N2 _-w2 ) (2 (78)16 4j ( o-~

I I2 = 
, 

12 3 L2 (j) (7 9)

16 );L N4

Now apply the second method using the modal structure.

Combining Equations [26],[27] and [28) gives the vertical

component of velocity

w = (C1 ei 8z , C2e-IAz) eI(kw,' - w0 (for ky=O). (80)
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Let C, = -C2 &ý C/2i. Then

w= Csin(bz) eJck•'1t) (81)

As a boundary condition, require that the vertical velocity

equal zero at the lower boundary of the internal wave field at

depth D. Then

= C sin(8D) e I(kx - w) - 0, (82)

= N2 _- •
sin (8D) =0, -- 86D = • kxD= nn, n=!,2.., (83)

n -I •a2 kD2N2
kx _ ••nl N.--2 , N (84)D 2_W2 6)2 n292 , kx2D2

Replace kX in the formula for BI in Equation [50] with this

dispersion relation. Taking h=0 and mode number n=l gives

B' = DoOBc e"'• __D_- (N 2 -W 2 ) [ 1 + e ( 185)
I =N2

Converting to a power spectral density

Sr =[•oB• 2 Dz-WT-
B (pJOB]2C2.D (N 2 - 2 ))2 [ I + e ]2 (06)

Model the velocity spectra with only a frequency dependence

since a dispersion relation exists relating k. to 0,
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1 V. c2 ; IVCt2 3 c (87)

Replace C2 in the B' 2 expression, Equation (86], with Equation

[87]

IzIiI =(~~aD2 ~ '* e .3I; 2, (85)11(91 paB)2 A 2N4(NV2-W 2) 2 1+e

IJB'1 = [pCl aB]2  CC DL (N2-W2 ) ( 1 + e 2. (89)
W 2 + ( 2 It 2 N4

C. UNDER ICE TURBULENCE MAGNETIC SIGNATURE

1. Geometry

The same geometry as for the internal wave calculation was

used, except that now the y-coordinate was important (Fig. 5).

The distance R was given by

J9 --•2 + yl + (h+z)2 , with R = xf + yf + zF. (90)

For calculational purposes, turbulence was assumed to be

confined to the region D,<z<D.

2. Turbulence magnetic signature

The expressions for the earth's magnetic field and the

induced current density are
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Figure 5: Geometry for Calculation of Turbulence Induced
Magnetic Field
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5 = B , and J= a(vxE). (x2B)

Due to the vertical direction of the magnetic field in arctic

regions, the current density has only x and y components

J- a (vBf- v,.Bf) (92)

Make a change of variables for the vertical direction

z+h-z; dz-dz; range D(<z<D - DO+h < z D+h. (93)

Then

J X A - a[B-vXzr - vYzf + (vy+vXx)2. (94)

The Biot-Savart law then gives

dB/ J 7x 'R d~ -- O -v~zf- vyzf. (v~yY- x) E dxdydz. (95S)
14 R -4 i 3

(x 2 , y2 ) z

Integration over x,y,z gives the components of the total

induced magnetic field.

,'=fffdB , 4,OBf x..y.. z.-.h -V e. *'(k9Oz dxdydz(96)
4 7Tx..-y... ---0. I -~k~ (..+y2+z2)3/2

The y-component equation is similar. The z-component is

1.ff j pOBfx a. -r .0z.h~ X 1
k. ye ikr3 V 1' e'lat"", fff xf-'J.J.f-o..JT dodydz,,(97)

Performing the integrations [see Appendix B] yields
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B; 2 - -'°BvTe- e-"wt e'kJh (e-kAD° - ek'D] (98)

B4 = - Be - e"i•w e-"ky [e'kA° - e(•] (99)

B= Jp0 oBv0e.i) I e'kh(eGk•°-e-k•) + e-'th(e'k•-e"*•) ].[100)

Approximating the geometry for an on-the-ice measurement

h 0; Do a 0; D--oo. (101)

B" = ILoBv~e-IWC102Bx(y) = IoBo-'= 1 22

B io°Bvoe'c [ 1 + 1 ] (103)
2 Fc+a3 kJi.+7J kX J~

Letting D approach infinity greatly simplifies the following

calculations. This procedure is justified due to the expected
magnitude of the parameters

-= 2 -t 2it D-100-1000m; -- e -k < 0.002 4 1.(104)

These equations still have a k-dependence. To get the

components as functions of only w and t, integrate over the k-

dependence
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Q-oOBVe'-i k 1 (105)

it -r ,J,, 4k,,, )-IL oBv~e" In[ Ik 0 (106)

where k,, is the smallest wavenumber (corresponding to the

longest wavelength) present in the x-direction. A limit on

wavelength is realistic for the ocean, and required to keep

the integral finite. Recall that k. keeps the total power

finite as k approached zero. k. thus represents the point in

the power spectrum at which the characteristic k"2 behavior

begins. k. is thus a reasonable choice for k.,n. Set kmi" equal

to k.. Then

B; p ve' ln(-+l) (107)

Similarly for the y and z components

Bl -poBvoe'-'t ln(v'+1) ,and B'. Ip oBVoe"*-t ln(V '+1) (2

For the z-component, integration was done only over the k

components which gave rise to the respective term via tho

Biot-Savart formula.
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The total induced magnetic field is now

B' /2 B +. , ', + B'n B/2 .. ° e- ln(a.+1) V1. (109)B2 Bo+ X Y ko

The horizontal component of the induced magnetic field is

Emu 1B pioBvoe'-1w1 ln(VYTl)Y~ 'By s g Iw ko "(1o

Again, the power spectrum was obtained by Fourier

transform of the autocorrelation of B', which is equivalent to

squaring the amplitude here

B/ 2  3(pIoBv.)
2  (1n (V -+ I) ) 2

2 (ca'+c2) k 2

B (pO°Bv 0 ) 2 (ln(vT+l)) 2

2 (W2c &2) k 
(

D. MEASURED MAGNETIC SPECTRA

The Arctic Internal Wave Experiment (AIWEX) was conducted

in 1985 on the arctic ice at 74'N, 145"W. In April of that

year, P. Czipott and W. Podney used two induction coil

magnetometers to measure the North-South horizontal component

of the Earth's magnetic field. Fig. 6 shows the results from

three runs. The spectra flattened out at low frequencies

because the electronic gain declines at low frequencies. The

region in the 10"2 -10.3 Hz decade was relatively unaffected.

The spectra here showed a cnaracteristic 1/f 2 dependence.
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They also showed an approximately hundred-fold magnitude

variation between the three runs. Thus, large magnitude

changes can occur over a temporal scale on the order of days.

Note that the bottom spectrum basically coincides with the

dashed line spectrum which corresponds to measurements made on

land at Poker Flat, Alaska.
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Figure 6: AIWEX Power Spectra for magnetometer (Czipott,
Podney, 1985)
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IVe RESULTS

A. EVALUATION OF INTERNAL WAVE MAGNETIC FIELD MODEL

Numerical evaluation of the formulas from the model used

the following values/parameters

lk" = 4%x10-7 N 4. 0 2S, 000 nT; (113)
A 2 M

3.33x.10-11 N=j.05Xj0-2 rad;
z M4 sec (114)

lvax = 105 M; .0 4in = 6.28XIO-4M-1. (115)

Table II lists sample numerical values using the continuum w-

and k-dependence method. Table III lists sample numerical

values using the modal method. For the continuum method, Fig.

7 shows the AIWEX model spectrum, the CEAREX model spectrum,

and an extrapolated spectrum for the AIWEX magnetometer data.

Extrapolation was made from the 10-1 _ 10,2 Hz range of Run

100. Fig. 8 shows the same spectra using the modal method for

the AIWEX and CEAREX models. The vertical extent, D, of the

internal wave field was 300 m (D'Asaro, Morehead, 1991).
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Figure 7: AIWEX Model Spectrum, CEAREX Model Spectrum, and
Extrapolated Spectrum for AIWEX Magnetometer Data (Continuum
Method)
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Figure 8: AIWEX Model Spectrum, CEAREX Model Spectrum, and
Extrapolated Spectrum for AIWEX Magnetometer Data (Mode
Structure Method)
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Table I1: Internal Wave Model Numerical Values
(Continuum Method)

frequency (Hz) B' AIWEX (nT 2/Hz) B' CEAREX (nT2/Hz)

10.1 1.3x103  6.Oxl04
10'4 1.3x104 6.0x104
10.1 8.2xi04  3.8x104
1.6x10"3  1.7x104 4.9x10 3

Table III: Internal Wave Model Numerical Values
(Mode Structure Method)

Frequency (Hz) B' AIWEX (nT 2/Hz) B' CEAREX (nT2/Hz)

i0"s 2.7x,0 6  1.3x10 8

10.4 2.7x105  1.3X10 6

10-3 1. lX104 5.2x3.01
1.6x10"3  1.2X10 2  3.3x10 1

The AIWEX magnetometer measurements were not compensated

for ionospherically generated magnetic fields. To separate

the internal wave induced magnetic fields from the ionospheric

fields, Czipott and Podney placed a tiltmeter on the ice as an

independent measure of internal wave activity at the AIWEX

site. They also obtained magnetograms of ionospheric activity

during the experiment from several measurement stations in

Alaska. Following Czipott and Podney, the signals from these

three sources are compared in Table IV.
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Table IV: Signal Characterizations

RUN # IONOSPHERE TILTMETER MAGNETOMETER
(NAGNETOGRAM)

100 "quiet" "high" "active"
103 "active" "active" "high"

.5 "active" "quiet" "quiet"
107 "quiet" "quiet" "quiet"

As a first order analysis, assume the ionosphere had only two

levels of activity, "quiet" and "active", measured by the

magnetograms. Assume the under ice seawater motion also had

only two levels of activity, "high"/"active" and "quiet",

measured by the tiltmeter. Then the above four runs show the

resulting magnetometer signal for the four possible

combinations of ionospheric activity and seawater motion.

Runs 100 and 105 indicate th 4. . the ionosphere and the seawater

motion each produced a measurable magnetometer signal.

Together, runs 100, 103, and 105 indicate that the magnitudes

of the magnetometer and ionospheric signals were of the same

order. Run 107 affirms that the magnetometer readings result

from actual ionospheric and seawater motion signals.

Extrapolation of the AIWEX magnetometer data with a 1/f 2

frequency dependence to the 10.3 - 10"5 Hz region gave power

spectrum values between 102 and 106 nT 2/Hz. For the continuum

method, the model values varied one to two orders of magnitude

above and below these extrapolated values. The i/kmin

dependence made these continuum models sensitive to the value
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of kj. chosen. Choosing Aix = 10L) m instead of 10,000 m

reduced the values by an order of magnitude. For the modal

method retaining only the lowest order mode, the AIWEX model

predicted values one to two orders of magnitude higher than

the extrapolated data, while the CEAREX model predicted values

about two orders of magnitude above the extrapolated data.

The mode structure model values depended on vertical extent of

the internal wave field as D2 . Taking D - 100 m instead of

300 m reduced the spectra by one order of magnitude and

brought them within one order of magnitude of the extrapolated

data. The vertical velocity profile of Equation (81) has a

simple sin(6z) dependence. Refining this profile could

significantly reduce the energy in each mode since B, 2 is

proportional to (velocity) 2 . Overall, the models reasonably

predicted the magnitude of the seawater induced magnetic

fields.

The frequency dependencies of the continuum models varied

significantly from the 1/f 2 dependence of the extrapolated

data. The AIWEX model predicted a linear increase with

frequency and then a rapid falloff as the buoyancy frequency,

N, is approached. The CEAREX model predicted a parabolic

falloff with frequency as (N2-4 2 ). Unfortunately, the gain

falloff of the AIWEX data over internal wave frequencies may

have masked any dropoff near the buoyancy frequency. These

continuum models predicted too much energy at the higher

frequencies. Apparently the assumption of frequency and
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wavenumber continua lead to erroneous predictions. The

specific relation between w and k, denoted by A2 (0) in the

models, must be determined. If one assumei that A(w) goes as

1/ (number of wavenumbers), and that number of wavenumbers was

proportional to frequency (see, for example, Garrett and Munk,

1972, for a similarly modeled dependence), then the models

would more closely predict the w-2 dependence of the data. One

could compare the internal wave model in the 10,1 - 10.2 Hz

range because internal wave oscillations are limited to

frequencies below the buoyancy frequency.

The mode structure method gave models with a much more

realistic frequency dependence. The AIWEX model declined as

1/f before going to zero near the buoyancy frequency. This

dependence paralleled the observed AIWEX velocity spectra

frequency dependence. The CEAREX model fell off as 1/f 2, just

as the CEAREX velocity spectra did. These parallel frequency

dependences between induced magnetic field and generating

velocities satisfied physical intuition. This close

correspondence between model and data implied that a proper

description of internal wave induced magnetic fields requires

utilizing the internal wave modal structure.

B. EVALUATION OF TURBULENCE MAGNETIC FIELD MODEL

Numerical evaluation of the formulas use the following

values/parameters
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p, = 4piX10--; a = 4.0 S. B = 25,OOOnT; (116)

2 = 5;7X104 ko = 2nx1O-'Hz. (117)V 0  0 ~Hz-s 4 (1)

The vo2 value was determined the same way as C2 for the

internal wave model, assuming that the CEAREX data 1/f 2

dependence extrapolates to the 10"I-10"2 Hz range. Sample

numerical values using Equation 102 are given in Table V.

Fig. 9 shows a plot of the B.' power spectral density (nT2/Hz)

versus frequency for A.,x - 100 m and also the extrapolated

AIWEX magnetometer spectrum.

Table V: Turbulence Model Numerical Values

FREQ (Hz) B'H 2 (nT 2/HZ) (I..x 100 in)

0.3 4.4x10"6

10"2 4.4x10"8

5x102  1. 8xlO'9
10" 4.4xI0 "1 0

The model spectra exhibited a characteristic 1w/2

dependence, just as the AIWEX data show in the 10"1 - 10.2 Hz

range. However, the model values were seven orders of

magnitude less than the AIWEX data. At 10'3 Hz the model

predicted magnitude was approaching the limits of the most

modern field detectors at 10.6 (nT 2/Hz). The smallness of the

predicted signal derived from the small velocities used and

the maximum characteristic wavelength of 100 m. The small

velocities on the order of 10"1 - 103 (cm2/s 2-Hz) were
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experimentally measured during AIWEX (McPhee, 1989) and their

power spectrum is shown in Fig. 10. The assumption of

isotropicturbulence in the model restricted wavelength values

to less than about 100 m because the maximum observed depth of

the upper boundary layer is about 100 m (Stanton) (note: the

"average" depth is about 30-40 m). Thus, while turbulent

motion in the upper boundary layer of the ocean could produce

magnetic signals, the magnitude remained small because the

volume of water generating the signal was limited. This

implied that the AIWEX magnetometer measurements in the 10"

10.3 band were due to ionospheric signal only.
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Figure 9: Turbulence Model and Extrapolated AIWEX
Magnetometer Spectra
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Power spectra of the vertical velocity time series at each level. The
95 percent confidence interval is shown at lower left. The spectra are
plotte on log-log axes, with successive spectra displaced one decade down
for clarity.

Fiqjure 10: AIWEX Vertical Velocity Power Spectra
(McPhee, 1989)
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V. CONCLUSIONS

The magnetic fields induced by the motions of seawater in

the earth's magnetic field were modeled analytically. Such

analyses required mathematically modeling the velocities of

the internal wave field and internal turbulence field, and

then applying Ampere's law via the Biot-Savart formulation.

For internal waves, the values predicted by the model for the

induced magnetic field were roughly equal in order of

magnitude to extrapolated magnetometer data. Treating

internal wave frequency and wavenumber as continua yielded

unphysical frequency dependences. Using an eigenmode

structure for internal waves yielded more realistic frequency

dependences. Thus, proper analysis of internal wave magnetic

signatures must incorporate the internal wave modal structure.

Additional magnetometer measurements should certify the 1/f 2

frequency dependence and determine the behavior near the local

buoyancy frequency. The turbulence model successfully

coincided with magnetometer measurements in frequency

dependence. The predicted frequency dependence matched the

1/f2 dependence of the data. However, the predicted

magnitudes were several orders of magnitude below the AIWEX

magnetometer measurements and approached the limits of the

most sensitive magnetometers. This implied that the

relatively small scale of turbulence motions (A"' = 100 m)
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resulted in a small induced magnetic field signature. The

AIWEX data in the 10"i - 10.3 Hz range were interpreted as

deriving from ionospherically generated signals
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VI. RECOMMENDATIONS

Additional measurements of seawater motion induced

magnetic fields are needed. Such measurements should be made

with highly sensitive magnetometers, for example,

superconducting quantum interference devices (SQUIDs).

Discrimination against ionospherically induced magnetic fields

must be done by using the large spatial coherence length of

ionospheric fields to identify and remove their signal.

The models can be extended to predict the signal seen by

a gradiometer. Thi-. involves expressing the induced magnetic

field at the field point in terms of field point position and

taking the gradient. Gradient measurements of internal wave

induced magnetic fields are more numerous than magnetometer

measurements (for example, Czipott and Podney, 1985; Podney,

1975).

Both the internal wave and the turbulence models for

induced magnetic field utilized the approximately vertical

orientation of the earth's magnetic field in the Arctic to

simplify the calculations. The models can be extended to

apply the Biot-Savart calculation method to the non-vertical

magnetic field at other parts of the world's oceans.

The internal wave model assumed a constant buoyancy

frequency, N, for the entire wave field in the horizontal and

vertical dimensions. In the actual ocean, the buoyancy
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frequency changes from location to location and varies

significantly with depth. A more refined model must include

such variations and should predict a less defined cutoff

frequency due to the spread in buoyancy frequencies.

The modal version of the internal wave model should be

refined by including the contributions of higher order modes.

The resulting correction should not be too large because

energy content rapidly declines for higher order modes due to

dissipation. The velocity profiles should also be refined.

As an example, require velocity continuity at the boundaries

of the internal wave field and allow exponential decay outside

these boundaries, analogous to going from an infinite square

well solution to a finite square well solution. The amplitude

within the well is reduced.
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VII. APPENDICES

A, CALCULATION 07 INTERNAL WAVE INDUCED MAGNETIC FIELD

For a region with constant Brunt-Vaisala frequency, N, the

vertical component of the seawater velocity is given by

w(x,y,z, t) = a(z) el(lht) (215)

a(Z) = e"ik'z [C1ei +* C2e-ia] )(19)

where: 6 -k N2 kY-0. (120)

Require as a boundary condition

w(x,y,z=Ot)"O, - ÷z=O)=lC1 + C21 - C1=-C2 C(

Then the vertical velocity component becomes

'(z) = Ce ikz [e18z - e-182] (122)

The derivative with respect to z is

-3 ()C(-ik 1 +i) e(ki) C(-ik-i) (123)

With the simplified geometry, the y-component of velocity is

zero. The x-component of velocity becomes
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u (x, y, z,t) 0 (iUj2 kQ) (-L) e (124)

-C8 (125)

These expressions can now be used to calculate the induced

magnetic field

B = di (h+z) (126)

= -- z.D •. a(wBx- uB,) (h+z) dxdz (127)
JX.--JZD, 2%- R 2

(6".-0'"1) coSycoaO * a (6un .0"6) (128)
.f./-b BP.oC I k. [ zdx

.D. 2n [ (hoz) + x*

The x-integration is done via contour integration in the upper

half plane

j~~x.* d __ _ _ __ _ _ - r , Kx(1 )
(h-z) 2 z* JV • (xi (h+z)) (x-i (h~z)) d- y (h+Z) 2 ÷.Z2

e ik,(i (h~z))i ,hz (1 0

27i[ ] + 0 = _e_(__ (130)
i (h+z) +i (h+z) (h+z)

Then
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°L--BO-- .h Jo., " ('k*"i).)c8y s * 6a-' • e ' o" )e'*• 'da (2.31)
2 k.

Performing the z-integrations and noting limits of integration

yields

I? P 'B 1 kkUsslh~j~1.AB/. •BOe*h-JOC I [( 1 -L ) (-k,.i6),+( 1 )e(-k,-Jb),])COsyco8s) +

+. 8 1 )e ] D. (133)

The z-component of the induced magnetic field is

calculated similatly

f IA di ."D IL o a (WB - UB,)
.... '. .. 22 RR x., x dzdx (134)

f.[" 1•i oBOC I( zO.i&s,) s + A int (BUS'e"1 6) x i(,x.w,)dzd (13S
2. ko- (h-z)1 ÷ x3

iii BEOC .ltD[ (W6-0_169) COs COSI$+ 8sin_ (e968+e6-J6)] (iej -kXb.( ) dz(136)
2n f". J)2

B' OBoC e-Ikh &_iwt I ( -1 - )e (k,*i6)8. e )c s c * - 1 7
2 r'k:;R(37

k, k.-IF I( 1.(k.1I)aD. (138)

Note that the x and z components have the same magnitude and

differ in phase by r/2. These last equations can be

simplified by multiplying the numerator and denominator by the

complex conjugate, and using Euler's identity for complex

exponentials, resulting in

iBKB' -- B-' -- ( I o 2. )e-N(hr)eI c[ (-ksin~z - Acos6z)2icosycosi *+(139)

+ (-kxcos6z + 8sin8z) 2 kn D. (140)
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B. CALCULATION OF TURBULENCE INDUCED MAGNETIC FIELD

Tha integrations for the components of the turbulence

induced magnetic field are shown below.

I, QoB fX-. z -h,• -roe"•t e lkrv

"4-J4 !J5...Jk.oh•+-: 2 (X 2+y2+z2) 3/ 2 dydz, (141)

I-2 0 OBV 0e-"w [z.D.h e-kV

zdxdz. (144)

2- 2. 2+2+ 2 3/22

47 Xk-- /° ZJx..T.z'D 0 .h (X 2 .z 2 )

Perform x-integration in upper half of complex plane
-2 V O i - 2 ifoB v 0  o z. D . h x(

B= 2 + -__-Dk X .-- (fo e dz, (145)

= • aBv 0  ek'rJ [e-kM• " e'k•] (146)

2kx •

The integration for the y-component is performed in the exact

same manner, with x and y interchanged.

The z-component integration is calculated similarly

Xa aB IL a.- .. v ,e 7rf _ __ he. _y•e__,_ (14 5)
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P.OBV.&e1* Ph if 2*fA-fj'y 2Y.1O"dvdydz ].(148)

21 ts Bv~e 1-itrD. b 0 lk.k. dx2 .z) +1y.yek YZ)(149)
If 2) Y... XD..h y (y 2 ,z 2 )

2~jo7te 4 V S.Fhr x 2lk+dx z z,

ý cp~Bv~e -ltz-D4JZ I -n. i l+ie ky Idz, (151)
(j'+_j2 f L',,h _ _

V~aBv~eI")c e-x e-xo kD e -k (ej(O-~y)152)
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C. INTERNAL WAVE VELOCITY POWER SPECTRAL DENSITY XEASUREMENTS

Data from the Coordinated Eastern Arctic Experiment

(CEAREX), March-April 1989.
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Rotary Spectra 200m S4
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Rotory Spectra 250m S4
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D. 1-D TO 2-D POWER SPECTRUM CONVERSION CALCULJTION

The one-dimensional power spectrum and its derivative are

fl(k,) = !1d f, (kj) 4
k(1  4_ df~k) (153)

1k 1  = s

The two-dimensional power spectrum is given by

1 -! d f1 (k1 ) dk1
f, (k) - d- f k) - k2 (154)

4 dk- (155)
ltýk~k J7 1

Make a change of variable

m a k k k dk1 : - dm, (156)

f4(k) = 41 f m (157)

From CRC Standard Math Tables (1987), given a trinomial in m,

M = a + bm + cm2 , then

fdm= (2-bf - (n-1)a_ m dn. (158)
V c2nc JI ncJV

Here, a=1, b=O, c=-l. Applying this integral twice yields

f4 (k) = n [ m,,T _ - 31n 3mi-/T-F + 3 sin-lm I O (159)
ik 5  4 8 8

f, (k) 1 (160)4 k5
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